首页> 外文OA文献 >An Incremental Learner for Language-Based Anomaly Detection in XML
【2h】

An Incremental Learner for Language-Based Anomaly Detection in XML

机译:基于语言的异常XmL异常检测的增量学习者

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Extensible Markup Language (XML) is a complex language, and consequently,XML-based protocols are susceptible to entire classes of implicit and explicitsecurity problems. Message formats in XML-based protocols are usually specifiedin XML Schema, and as a first-line defense, schema validation should rejectmalformed input. However, extension points in most protocol specificationsbreak validation. Extension points are wildcards and considered best practicefor loose composition, but they also enable an attacker to add uncheckedcontent in a document, e.g., for a signature wrapping attack. This paper introduces datatyped XML visibly pushdown automata (dXVPAs) aslanguage representation for mixed-content XML and presents an incrementallearner that infers a dXVPA from example documents. The learner generalizes XMLtypes and datatypes in terms of automaton states and transitions, and aninferred dXVPA converges to a good-enough approximation of the true language.The automaton is free from extension points and capable of stream validation,e.g., as an anomaly detector for XML-based protocols. For dealing withadversarial training data, two scenarios of poisoning are considered: apoisoning attack is either uncovered at a later time or remains hidden.Unlearning can therefore remove an identified poisoning attack from a dXVPA,and sanitization trims low-frequent states and transitions to get rid of hiddenattacks. All algorithms have been evaluated in four scenarios, including a webservice implemented in Apache Axis2 and Apache Rampart, where attacks have beensimulated. In all scenarios, the learned automaton had zero false positives andoutperformed traditional schema validation.
机译:可扩展标记语言(XML)是一种复杂的语言,因此,基于XML的协议易受整个类别的隐式和显式安全问题的影响。基于XML的协议中的消息格式通常是在XML模式中指定的,作为一线防御,模式验证应拒绝格式错误的输入。但是,大多数协议规范中的扩展点都会破坏验证。扩展点是通配符,被认为是松散组合的最佳实践,但是它们也使攻击者能够在文档中添加未经检查的内容,例如,用于特征包装攻击。本文介绍了用于混合内容XML的数据类型化XML可视下推自动机(dXVPA)语言表示形式,并提出了从示例文档中推断出dXVPA的增量学习器。学习者根据自动机状态和转换来概括XML类型和数据类型,并且推断出的dXVPA收敛到真实语言的足够近似。自动机没有扩展点,并且能够进行流验证,例如,作为XML的异常检测器。基于协议。为了处理对抗性训练数据,考虑了两种中毒情况:中毒攻击在以后发现或隐藏,因此,不学习可以从dXVPA中删除已识别的中毒攻击,并且进行消毒可以清除低频率状态和过渡以摆脱隐藏攻击。已在四种情况下评估了所有算法,包括在Apache Axis2和Apache Rampart中实现的Web服务(已模拟攻击)。在所有情况下,学习到的自动机的误报率为零,并且优于传统模式验证。

著录项

  • 作者

    Lampesberger, Harald;

  • 作者单位
  • 年度 2016
  • 总页数
  • 原文格式 PDF
  • 正文语种
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号